Wrestling with a WOMBAT: New features for linear mixed model analyses in the genomic age

Karin Meyer

Animal Genetics and Breeding Unit, University of New England, Armidale, Australia

11 WCGALP

What is (a) WOMBAT?

Enigmatic marsupial?

O 2010 Encyclopeedia Britannica, Inc.

What is (a) WOMBAT?

Enigmatic marsupial?

O 2010 Encyclopeedia Britannica, Inc.

Or acronym? Waste Of Money, Brains And Time

Computer hacker's dictionary

Introduction

What is (a) WOMBAT?

Or acronym? Waste Of Money, Brains And Time

Computer hacker's dictionary

WOMBAT

is a software package for linear mixed model analysis in quantitative genetics

- ⊖ Aimed at animal breeding applications
- Successor of DFREML

Selected topics

Many changes & expansion of capabilities over the last decade:

- Parallel processing
- 2 Multivariate estimation: more than a few traits
 - Penalties to reduce sampling errors
 - Pooling estimates from analyses by parts
- Solving (genomic) mixed model equations
 - Single-step BLUP modules
 - Genomic relationship matrices & friends

Changes in Computing Paradigm

- From
 - Sparse mixed model equations
 - Single processor, limited memory

• То

- Multiple processors & cores extensive RAM, vast disk space
- Genomic information
 - \rightarrow dense matrix operations

Changes in Computing Paradigm

From

- Sparse mixed model equations
- Single processor, limited memory

• То

- Multiple processors & cores extensive RAM, vast disk space
- Genomic information
 - \rightarrow dense matrix operations

- Adapt software and style of programming
 - Parallel processing to minimize elapsed ('wall') time

Parallel computing

Parallel execution for WOMBAT

- REML: iterative solution scheme
 - mostly sequential
- Factor / invert coefficient matrix for each iterate
- 'Supernodal' approach
 - identify and extract dense sub-blocks of sparse matrix
 - carry out computations using dense matrix manipulations
 - use efficient BLAS3 and LAPACK library routines
- Sparse vs. dense storage

- compiled using ifort
- load highly optimised routines from Intel® multi-threaded Math Kernel Library
- use OMP directives to parallelize selected loops
- set OMP_NUM_THREADS to limit no. of threads used

Penalized REML for 'better' MV estimates

- MV analyses for q traits
 - technically feasible for larger q
- Estimates
 - q(q+1)/2 parameters per $\hat{\Sigma}$
 - SAMPLING VARIATION!
- $\bullet \ \text{`Loss'} \to \text{difference:} \ \hat{\Sigma} \ \text{and} \ \Sigma$
 - $L_1(\Sigma, \hat{\Sigma}) = \operatorname{tr}(\Sigma^{-1}\hat{\Sigma}) \log |\Sigma^{-1}\hat{\Sigma}| q$
 - bias² + sampling variance

- Improve \longleftrightarrow reduce loss
 - Penalty on log L designed to reduce SV
 - Estimates that are on average closer to true values

Penalized REML for 'better' MV estimates

- MV analyses for q traits
 - technically feasible for larger q
- Estimates
 - q(q+1)/2 parameters per $\hat{\Sigma}$
 - SAMPLING VARIATION!
- $\bullet \ \text{`Loss'} \to \text{difference:} \ \hat{\Sigma} \ \text{and} \ \Sigma$
 - $L_1(\Sigma, \hat{\Sigma}) = \operatorname{tr}(\Sigma^{-1}\hat{\Sigma}) \log |\Sigma^{-1}\hat{\Sigma}| q$
 - bias² + sampling variance

- Improve \longleftrightarrow reduce loss
 - Penalty on log L designed to reduce SV
 - Estimates that are on average closer to true values
- Choice of penalty?
 - Need additional information: assume prior distribution of function of parameters to be estimated
 - Penalty $\propto \log$ of probability density

Proposal: 'Simple' penalties

- $inom{inom{I}}{inom{I}}$ Mild, default penalties on scale-free functions of $\hat{\Sigma}$
 - achieve high proportion of reductions in loss feasible
 - avoid laborious estimation of tuning factor
 - Functions and assumed prior distributions
 - Canonical eigenvalues
 - ▷ Beta distribution on [0, 1]
 - shrink towards mean
 - Partial correlations
 - \triangleright correlations for traits *i* < *j* given *i* + 1 to *j* 1
 - \triangleright Beta distribution on [-1, 1]
 - shrink towards zero or phenotypic values

Meyer, K., 2016. Simple penalties on maximum likelihood estimates of genetic parameters to reduce sampling variation. Genetics 203:1885–1900.

Multivariate estimation

Penalized REML in WOMBAT

- New and 'simple'
 - Invoke by SPECIAL option(s) in parameter file (single line)
 - ▷ Select 'function' to penalize
 - ▷ Choose ESS = $\alpha + \beta$ of Beta(α, β)
 - Set shrinkage target

<pre># penalty on genetic partial correlations # shrink towards phenotypic; ESS = 8 SPECIAL</pre>
PENALTY PACORR PHENV animal 8.0 END

- Older, more complicated
 - Invoke by run option --bend and SPECIAL options
 - ▷ still functional!
 - requires tuning factor(s)
 - Multiple runs & side-by side comparisons

 \clubsuit Example 19: Use and 🗳 of details

Pooling results from analyses by parts

MANY traits: analyse overlapping subsets

e.g. q(q-1)/2 pairs of traits

- Pool into overall covariance matrix(es)
 - must be 'safely' positive definite
 - have elements 'similar' to part results
 - do not change variance ratios markedly
 - do not distort phenotypic variances
- Often done too naively
 - Shrink eigenvalues of one covariance matrix at a time

 $\stackrel{(l)}{\longrightarrow}$ 'Bending' (Hayes & Hill 1981) Eigenvalues of $\Sigma_{P}^{-1}\Sigma_{G}$

Pooling results from analyses by parts

MANY traits: analyse overlapping subsets

e.g. q(q-1)/2 pairs of traits

- Pool into overall covariance matrix(es)
 - must be 'safely' positive definite
 - have elements 'similar' to part results
 - do not change variance ratios markedly
 - do not distort phenotypic variances
- Often done too naively
 - Shrink eigenvalues of one covariance matrix at a time
 - 🖒 Better: Pool matrices for all RE jointly
 - $\boldsymbol{\Theta}$ allow for repartitioning due to sampling
 - $oldsymbol{\Theta}$ keep Σ_P approx. same

 $\stackrel{(0)}{\longrightarrow}$ 'Bending' (Hayes & Hill 1981) Eigenvalues of $\Sigma_{
ho}^{-1}\Sigma_{G}$

Likelihood based pooling

- 'Iterative summation of expanded part matrices' (Mäntysaari 1999)
- Convert $\hat{\Sigma}_i$ to pseudo-observations (Thompson et al. 2005)
 - use any REML software to pool
- Recommend
 - Pool covariance matrices for all sources of variation simultaneously
 - Construct data matrix in log L from $\hat{\Sigma}_i$
 - Impose 'pseudo-pedigree' structure
 - \rightarrow mimic sampling covariances between causal components
 - $\,\triangleright\,\,$ e.g. balanced paternal-half sib families for simple animal model
 - Place very mild penalty on log L
 - → Simulation: resulting estimates of pooled covariance matrices are on average closer to population values

Meyer, K., 2013. A penalized likelihood approach to pooling estimates of covariance components from analyses by parts. J. Anim. Breed. Genet. 130:270–285.

Pooling using WOMBAT

- WOMBAT is set up to make analyses of subsets of traits easy
 - generates parameter files for part analyses; option --subset
 - picks out relevant info from overall data & pedigree files
 - writes out files with partial results; ready for pooling
- Invoke with run option --pool
- Additional choices in parameter file
 - pseudo pedigree
 - smallest eigenvalue allowed
 - penalty

POOL

- # smallest eigenvalue in pooled matrix
 SMALL 0.001d0
- # pseudo pedigree structure: pat. half sib PSEUPED PHS 50 10
- # pool with penalty on canonical eigenvalues
 PENALTY KANEIG 4

END

 \bigstar Example 15: use and bar with details

Single step BLUP

Modules for Iterative Solution of MME

\checkmark Adapted for "single-step" analyses \rightarrow research tool

- Iterative solution via PCG algorithm
- Multivariate incl. principal components
- 'Explicit' genetic groups

🖒 Breeding value model

- Run option --s1step
 - \triangleright MME in core; input \mathbf{H}^{-1}
 - Block-, diagonal or SSOR precond.
- Run option --s2step
 - $\,\triangleright\,\,$ Iteration on data; input ${\bf G}^{-1}-{\bf A}_{22}^{-1}$
 - \triangleright **A**⁻¹ from pedigree
 - Diagonal preconditioner only

agbur

км

Single step BLUP

Modules for Iterative Solution of MME

\checkmark Adapted for "single-step" analyses \rightarrow research tool

- Iterative solution via PCG algorithm
- Multivariate incl. principal components
- 'Explicit' genetic groups

🖒 Breeding value model

- Run option --s1step
 - \triangleright MME in core; input \mathbf{H}^{-1}
 - Block-, diagonal or SSOR precond.
- Run option --s2step
 - $\,\triangleright\,\,$ Iteration on data; input ${\bf G}^{-1}-{\bf A}_{22}^{-1}$
 - \triangleright **A**⁻¹ from pedigree
 - Diagonal preconditioner only

C Hybrid model Fernando et al.

- Run option --s3step (new)
 - Input: marker allele counts
 - $\,\triangleright\,\,$ Includes imputation step
 - Diagonal precond.

Genomic relationship matrices in WOMBAT

Many programs available to calculate relationship matrices for SS-BLUP

🖒 New WOMBAT module

- Pre-analysis step
- Compatible Input/Output file formats for other WOMBAT tasks
- Choice of methods from literature
- Invoke with run option --hinv

- ☆ Some options
 - G or A₂₂
 - Weighted average of **G** and **A**₂₂
 - Scale \boldsymbol{G} to align with \boldsymbol{A}_{22}
 - $\mathbf{A}^{-\gamma}\ldots$ with Meta-Founders
 - G^{-1} or A^{-1}_{22}
 - $\log |\mathbf{H}|$
 - \mathbf{H}^{-1} inverse joint rel. matrix
 - $\mathbf{H}^{-\gamma}\ldots$ with Meta-Founders
- More options soon (e.g. APY-like)

Summary

Finale

• WOMBAT: features for the 21st century

- Multi-threaded processing
- Higher dimensional multivariate REML
- Single step genomic BLUP
- Availability
 - Free download: Executable, manual & suite of examples

